3.3125 \(\int (a+b x)^m (c+d x)^{2-m} (e+f x) \, dx\)

Optimal. Leaf size=147 \[ \frac{f (a+b x)^{m+1} (c+d x)^{3-m}}{4 b d}-\frac{(b c-a d)^2 (a+b x)^{m+1} (c+d x)^{-m} \left (\frac{b (c+d x)}{b c-a d}\right )^m (a d f (3-m)-b (4 d e-c f (m+1))) \, _2F_1\left (m-2,m+1;m+2;-\frac{d (a+b x)}{b c-a d}\right )}{4 b^4 d (m+1)} \]

[Out]

(f*(a + b*x)^(1 + m)*(c + d*x)^(3 - m))/(4*b*d) - ((b*c - a*d)^2*(a*d*f*(3 - m) - b*(4*d*e - c*f*(1 + m)))*(a
+ b*x)^(1 + m)*((b*(c + d*x))/(b*c - a*d))^m*Hypergeometric2F1[-2 + m, 1 + m, 2 + m, -((d*(a + b*x))/(b*c - a*
d))])/(4*b^4*d*(1 + m)*(c + d*x)^m)

________________________________________________________________________________________

Rubi [A]  time = 0.0730053, antiderivative size = 146, normalized size of antiderivative = 0.99, number of steps used = 3, number of rules used = 3, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.125, Rules used = {80, 70, 69} \[ \frac{(b c-a d)^2 (a+b x)^{m+1} (c+d x)^{-m} \left (\frac{b (c+d x)}{b c-a d}\right )^m (-a d f (3-m)-b c f (m+1)+4 b d e) \, _2F_1\left (m-2,m+1;m+2;-\frac{d (a+b x)}{b c-a d}\right )}{4 b^4 d (m+1)}+\frac{f (a+b x)^{m+1} (c+d x)^{3-m}}{4 b d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x)^m*(c + d*x)^(2 - m)*(e + f*x),x]

[Out]

(f*(a + b*x)^(1 + m)*(c + d*x)^(3 - m))/(4*b*d) + ((b*c - a*d)^2*(4*b*d*e - a*d*f*(3 - m) - b*c*f*(1 + m))*(a
+ b*x)^(1 + m)*((b*(c + d*x))/(b*c - a*d))^m*Hypergeometric2F1[-2 + m, 1 + m, 2 + m, -((d*(a + b*x))/(b*c - a*
d))])/(4*b^4*d*(1 + m)*(c + d*x)^m)

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 70

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Dist[(c + d*x)^FracPart[n]/((b/(b*c - a*d)
)^IntPart[n]*((b*(c + d*x))/(b*c - a*d))^FracPart[n]), Int[(a + b*x)^m*Simp[(b*c)/(b*c - a*d) + (b*d*x)/(b*c -
 a*d), x]^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] &&
(RationalQ[m] ||  !SimplerQ[n + 1, m + 1])

Rule 69

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Hypergeometric2F1[
-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-(d/(b*c - a*d)), 0]))

Rubi steps

\begin{align*} \int (a+b x)^m (c+d x)^{2-m} (e+f x) \, dx &=\frac{f (a+b x)^{1+m} (c+d x)^{3-m}}{4 b d}+\frac{(4 b d e-f (a d (3-m)+b c (1+m))) \int (a+b x)^m (c+d x)^{2-m} \, dx}{4 b d}\\ &=\frac{f (a+b x)^{1+m} (c+d x)^{3-m}}{4 b d}+\frac{\left ((b c-a d)^2 (4 b d e-f (a d (3-m)+b c (1+m))) (c+d x)^{-m} \left (\frac{b (c+d x)}{b c-a d}\right )^m\right ) \int (a+b x)^m \left (\frac{b c}{b c-a d}+\frac{b d x}{b c-a d}\right )^{2-m} \, dx}{4 b^3 d}\\ &=\frac{f (a+b x)^{1+m} (c+d x)^{3-m}}{4 b d}+\frac{(b c-a d)^2 (4 b d e-a d f (3-m)-b c f (1+m)) (a+b x)^{1+m} (c+d x)^{-m} \left (\frac{b (c+d x)}{b c-a d}\right )^m \, _2F_1\left (-2+m,1+m;2+m;-\frac{d (a+b x)}{b c-a d}\right )}{4 b^4 d (1+m)}\\ \end{align*}

Mathematica [A]  time = 0.139492, size = 128, normalized size = 0.87 \[ \frac{(a+b x)^{m+1} (c+d x)^{-m} \left (b^3 f (m+1) (c+d x)^3-(b c-a d)^2 \left (\frac{b (c+d x)}{b c-a d}\right )^m (-a d f (m-3)+b c f (m+1)-4 b d e) \, _2F_1\left (m-2,m+1;m+2;\frac{d (a+b x)}{a d-b c}\right )\right )}{4 b^4 d (m+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x)^m*(c + d*x)^(2 - m)*(e + f*x),x]

[Out]

((a + b*x)^(1 + m)*(b^3*f*(1 + m)*(c + d*x)^3 - (b*c - a*d)^2*(-4*b*d*e - a*d*f*(-3 + m) + b*c*f*(1 + m))*((b*
(c + d*x))/(b*c - a*d))^m*Hypergeometric2F1[-2 + m, 1 + m, 2 + m, (d*(a + b*x))/(-(b*c) + a*d)]))/(4*b^4*d*(1
+ m)*(c + d*x)^m)

________________________________________________________________________________________

Maple [F]  time = 0.057, size = 0, normalized size = 0. \begin{align*} \int \left ( bx+a \right ) ^{m} \left ( dx+c \right ) ^{2-m} \left ( fx+e \right ) \, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)^m*(d*x+c)^(2-m)*(f*x+e),x)

[Out]

int((b*x+a)^m*(d*x+c)^(2-m)*(f*x+e),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (f x + e\right )}{\left (b x + a\right )}^{m}{\left (d x + c\right )}^{-m + 2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^m*(d*x+c)^(2-m)*(f*x+e),x, algorithm="maxima")

[Out]

integrate((f*x + e)*(b*x + a)^m*(d*x + c)^(-m + 2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (f x + e\right )}{\left (b x + a\right )}^{m}{\left (d x + c\right )}^{-m + 2}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^m*(d*x+c)^(2-m)*(f*x+e),x, algorithm="fricas")

[Out]

integral((f*x + e)*(b*x + a)^m*(d*x + c)^(-m + 2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)**m*(d*x+c)**(2-m)*(f*x+e),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (f x + e\right )}{\left (b x + a\right )}^{m}{\left (d x + c\right )}^{-m + 2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^m*(d*x+c)^(2-m)*(f*x+e),x, algorithm="giac")

[Out]

integrate((f*x + e)*(b*x + a)^m*(d*x + c)^(-m + 2), x)